Monash University has developed new technology to purify contaminated water, making it fit for consumption in a fast and energy-efficient manner.

Using membranes made from graphene oxide, an atomically thin sheet where every atom is present on the surface, which is chemically inert so it doesn’t react with other chemicals, researchers have developed ground-breaking water treatment technology that can be manufactured using gravure printing – a widely-available industrial printing process.

The technology will directly benefit Australian and international companies seeking energy savings and other cost advantages in water and wastewater filtration and industrial processes associated with pulp and paper, food and beverage, inks, pigments and dyes, pharmaceuticals and metals.

Supported by funding from the Australian Government’s Co-operative Research Centre (CRC) program of approximately $1.2 million, and with investment from industry partners Clean TeQ Holdings and Ionic Industries, the technology is entering commercialisation phase after undergoing seven years of research and development.   

Lead researcher, Mainak Majumder, from Monash’s Department of Mechanical and Aerospace Engineering and the Nanoscale Science and Engineering Laboratory, said, “This Australian-made, world-first technology can be easily adapted by industries in everything from drinking water purification, to mining waste treatment to food and beverage industry applications.”

Mr Majumder said the graphene oxide membrane technology offers an enormous cost advantage to industry due to its proven ability to reduce energy consumption during water filtration.

“Since the membrane can be produced using standard industrial printing processes, the technology is also highly versatile and cost-efficient,” Mr Majumder said.

“The graphene oxide sheets are layered into a structure that looks a little like puff pastry when viewed under a powerful microscope. Water and small molecules can flow around individual sheets or through pin-hole defects in the sheets and pass through the layered structure.”

Dr Sam Martin, who leads Mr Majumder’s membrane development team, said, “The gaps between the sheets are very small, around a one billionth of a metre, and permit only the smallest of molecules to pass, sieving out and rejecting the larger ones.

“Industry can use the new membranes where nanofiltration and reverse osmosis are currently used. The energy-efficient nature of the membrane makes it more cost-efficient than conventional membranes used in industrial processes.”

Managing Director of Ionic Industries, Simon Savage, said that people across the world would benefit from the technology.

“In wastewater treatment, the ability to remove pesticides and hormones is becoming more important, especially when water reuse is considered,” Mr Savage said.

“In countries such as China, India and Africa where access to fresh water for drinking, agriculture and industry is critical, the new membranes may be used to filter surface and ground water into drinking water.”

Founder and CTO of CleanTeq, Peter Voigt, said, ”We aim to be manufacturing these membranes by the second half of 2019. We expect that the improved flux and the better robustness of the membrane will make the whole of life costs significantly lower than those currently in operation.”

Lauren ‘LJ’ Butler is the Assistant Editor of Utility magazine and has been part of the team at Monkey Media since 2018.

After completing a Bachelor of Media, Communications and Professional Writing at the University of Wollongong in 2014, and prior to writing about the utility sector, LJ worked as a Journalist and Sub Editor across the horticulture, hardware, power equipment, construction and accommodation industries with publishers such as Glenvale Publications, Multimedia Publishing and Bean Media Group.

©2024 Utility Magazine. All rights reserved


We're not around right now. But you can send us an email and we'll get back to you, asap.


Log in with your credentials

Forgot your details?